Posts Tagged ‘padi’

PENGARUH INDUKSI MUTASI IRADIASI SINAR GAMMA PADA PADI, CABAI, SORGUM, DAN KEDELAI

download lengkap pdf Pengaruh Iradiasi klik disini….!!!

PENGARUH INDUKSI MUTASI IRADIASI SINAR GAMMA PADAPADI, CABAI, SORGUM, DAN KEDELAI

PENDAHULUAN

Latar Belakang

Padi, sorgum, kedelai, dan cabe merupakan termasuk komoditi penting di Indonesia. Luas pertanaman padi di Indonesia diperkirakan mencapai 11–12 juta ha, yang tersebar di berbagai tipologi lahan seperti sawah (5,10 juta ha), lahan tadah hujan (2,10 juta ha), ladang (1,20 juta ha), dan lahan pasang surut (Susanto, et al., 2003). Sorgum merupakan merupakan salah satu komoditi unggulan untuk meningkatkan produksi bahan pangan dan energi, karena keduanya dapat diintegrasikan proses budidayanya dalam satu dimensi waktu dan ruang (Sungkono, et al., 2009). Kebutuhan   kedelai secara nasional per tahun 2004 sebanyak 2.955.000 ton sedangkan produksi dalam negeri hanya 1.878.898 ton (PDIN BATAN). Pada  saat  tertentu,  kebutuhan  cabai  sangat tinggi  sehingga  produksi  nasional  tidak  mampu memenuhi  permintaan  yang  selalu  bertambah  dari  tahun ke tahun (Suharsono, et al., 2009).

Pengembangan varietas unggul pada tanaman padi, sorgum, kedelai, dan cabai perlu terus dilakukan agar dapat memenuhi kebutuhan masyarakat. Salah satu cara yang dapat dilakukan dalam pengembangan varietas unggul adalah dengan melakukan induksi mutasi dengan iradiasi sinar gamma. Induksi mutasi dengan iradiasi sinar gama dapat digunakan dalam pengembangan varietas unggul tanaman anyelir (Aisyah, et al., 2009), dan sorgum.

Mutasi adalah perubahan materi genetik, yang merupakan sumber pokok dari semua keragaman genetik dan merupakan bagian dari fenomena alam (Aisyah, 2006). Mutasi dapat terjadi secara spontan di alam, namun peluang kejadiannya sangat kecil, yaitu sekitar 10-6 (Aisyah, 2009). Induksi mutasi dapat dilakukan dengan menggunakan mutagen kimia seperti EMS (ethylene methane sulfonate), NMU (nitrosomethyl urea), NTG (nitrosoguanidine), dan lain-lain) atau mutagen  fisik  (seperti  sinar gamma,  sinar X, sinar neutron dan lain-lain). Akan tetapi mutasi dengan iradiasi pada bagian vegetatif  tanaman memperlihatkan hasil  yang  lebih  baik  dibandingkan  perlakuan  dengan mutagen  kimia (Aisyah, 2009).

Dosis iradiasi yang digunakan untuk menginduksi keragaman sangat menentukan keberhasilan terbentuknya tanaman mutan. Broertjes  dan  Van  Harten  (1988)  melaporkan kisaran  dosis  radiasi  sinar  gamma  pada  berbagai  jenis tanaman hias,  dan  untuk  tanaman  anyelir  kisaran  yang telah  dicobakan  berada  pada  selang yang masih  cukup lebar, yaitu  antara 25-120 gray. Jika iradiasi dilakukan pada benih, pada umumnya kisaran dosis yang  efektif lebih tinggi dibandingkan jika dilakukan pada bagian tanaman lainnya. Semakin banyak kadar oksigen dan molekul air (H2O) dalam materi yang diiradiasi, maka akan semakin banyak pula radikal bebas yang terbentuk sehingga tanaman menjadi lebih sensitif (Herison, et al., 2008). Untuk  itu maka perlu dicari  dosis  optimum  yang  dapat  efektif menghasilkan tanaman mutan  yang pada  umumnya  terjadi  pada  atau  sedikit  dibawah  nilai LD50  (Lethal  Dose  50).  LD50  adalah  dosis  yang menyebabkan  50%  kematian  dari  populasi  yang diradiasi.

Tujuan

Tujuan dari dilakukannya pratikum ini adalah:

1.      Mengetahui pengaruh berbagai dosis iradiasi sinar gamma terhadap pertumbuhan benih tanaman padi, kedelai, sorgum, dan cabai

2.      Mengetahui tingkat radiosensitivitas benih tanaman padi, kedelai, sorgum, dan cabai

3.      Mengetahui LD50 benih tanaman padi, kedelai, sorgum, dan cabai

TINJAUAN PUSTAKA

Tanaman Padi

Padi merupakan tanaman pangan berupa rumput berumpun. Tanaman ini berasal daru dua benua, yaitu Asia dan Afrika Barat tropis dan subtropis. Luas pertanaman padi di Indonesia diperkirakan mencapai 11–12 juta ha, yang tersebar di berbagai tipologi lahan seperti sawah (5,10 juta ha), lahan tadah hujan (2,10 juta ha), ladang (1,20 juta ha), dan lahan pasang surut (Susanto, et al., 2003). Padi merupakan bahan makanan yang menghasilkan beras. Bahan makanan ini merupakan makanan pokok bagi sebagian besar penduduk Indonesia.

Terdapat 25 spesies Oryza. Jenis yang paling terkenal adalah O. sativa dengan dua subspesies. Pertama, adalaj Japonica (padi bulu) yang ditanam di daerah subtropis. Kedua, indica (padi cere) yang ditanam di daerah tropis. Adaptasi Japonica yang berkembang di beberapa daerah di Indonesia disebut sebagai subspesies javanica.

Kegiatan penelitian tanaman padi sawah dengan teknik mutasi telah banyak dilakukan, institusi BATAN sendiri telah berhasil menciptakan varietas baru melalui pemuliaan dengan teknik mutasi ini. Contoh keberhasilan tersebut adalah dilepaskannya beberapa varietas padi diantaranya adalah; Atomita 1, Atomita 2, Atomita 3, Atomita 4, Situgintung, Cilosari, Woyla, Meraoke, Kahayan, Winongo, Diah Suci, Yuwono dan Mayang. Beberapa varietas unggul tersebut telah dimanfaatkan dalam program persilangan padi.

Tanaman Kedelai

Kedelai merupakan tanaman pangan berupa semak yang tumbuh tegak. Kedelai jenis liar (Glycine ururiencis) merupakan kedelai yang menurunkan berbagai kedelai yang ada pada saat ini, yaitu (Glycine max (L) Merril). Kedelai  merupakan   komoditas   pertanian   yang   sangat   penting.  Kedelai dapat dikonsumsi langsung dan dapat juga digunakan sebagai bahan baku agroindustri  seperti   tempe, tahu, tauco, kecap,susu kedelai  dan untuk keperluan industri pakan ternak. Kebutuhan kedelai nasional Indonesia meningkat tiap tahunnya. Saat ini kebutuhan perkapita  mencapai   13,41 kg.   Kebutuhan   kedelai   secara   nasional   per   tahun   2004 sebanyak 2.955.000 ton sedangkan produksi dalam negeri hanya 1.878.898 ton (PDIN BATAN).

Jumlah ketersediaan varietas unggul kedelai di Indonesia hingga sekarang masih terbatas. Karena itu BATAN dalam peran sertanya memperbanyak varietas unggul   terus melaksanakan kegiatan penelitian untuk memecahkan masalah nasional tersebut. pemuliaan mutasi  kedelai  dimulai  pada  tahun 1977.  Sampai  dengan  tahun 1998 dengan memanfaatkan teknik mutasi radiasi  telah dihasilkan 3 vareietas unggul  kedelai yaitu Muria dan Tengger, yang dirilis pada tahun 1987 dan varietas Meratus yang dirilis pada tahun 1998. Hasil dari kegiatan litbangyasa di bidang kekacangan ini agak lambat karena penelitian  lebih difokuskan pada varietas padi  yang merupakan bahan pangan utama dan lebih memerlukan perhatian untuk mencukupi kebutuhan pangan nasional.

Pada tahun 2004 yang lalu BATAN kembali merilis varietas unggul baru kedelai setelah  beberapa tahun tidak merilis varietas sejak tahun 1998. Varietas baru ini merupakan   hasil   persilangan   dari   galur  mutan   No.214 dengan  Galur  Mutan 23-D (dihasilkan dari iradiasi   sinar Y terhadap varietas Guntur). Varietas  ini  diberi  nama Rajabasa dan dilepas sebagai varietas unggul melalui SK Menteri Pertanian No. 171/KPTS/LB 240/3/2004.

Tanaman Sorgum

Sorgum (Sorghum bicolor L.) adalah tanaman serealia yang potensial untuk dibudidayakan dan dikembangkan, khususnya pada daerah-daerah marginal dan kering di Indonesia. Keunggulan sorgum terletak pada daya adaptasi agroekologi yang luas, tahan terhadap kekeringan, produksi tinggi, perlu input lebih sedikit serta lebih tahan terhadap hama dan penyakit dibading tanaman pangan lain. Selain itu, tanaman sorgum memiliki kandungan nutrisi yang tinggi, sehingga sangat baik digunakan sebagai sumber bahan pangan maupun pakan ternak alternatif. Terkait dengan energi, di beberapa negara seperti Amerika, India dan Cina, sorgum telah digunakan sebagai bahan baku pembuatan bahan bakar etanol (bioetanol). Sorgum merupakan merupakan salah satu komoditi unggulan untuk meningkatkan produksi bahan pangan dan energi, karena keduanya dapat diintegrasikan proses budidayanya dalam satu dimensi waktu dan ruang (Sungkono, et al., 2009).

Sejumlah galur mutan tanaman sorgum dengan sifat-sifat agronomi unggul  seperti tahan rebah, genjah, produksi tinggi, kualitas biji baik, dan lebih tahan terhadap kekeringan telah dihasilkan dan dikoleksi sebagai plasma nutfah di PATIR-BATAN. Bekerjasama dengan Departemen Pertanian, penelitian dilanjutkan untuk pengujian secara multi lokasi dan multi musim, sebelum akhirnya galur-galur mutan diusulkan untuk dilepas menjadi varietas sorgum baru. Pengujian dilakukan di beberapa Propinsi termasuk Jabar, Jateng, DIY, Jatim, NTB, NTT, Sultra, Sulut, and Gorontalo.

Tanaman Cabai

Cabai (Capsicum spp.) berasal dari dunia baru, spesies C. annum berasal dari meksiko, C. frutescens, C, baccatum, C. chinense, dan C. pubescens berasal dari Amerika Selatan. Lebih dari 100 spesies Capsicum telah diidentifikasi. Klasifikasi speies – speies tersebut berdasarkan pada karakter morfologi (utama bunga), dan dapa tidaknya dilakukan persilangan antar spesies, serta biji hibrida yang fertil. Pemuliaan cabai pertama dilakukan di Amerika tropis untuk kultivar cabai manis, sedangkan untuk cabai pedas, pemuliaannya baru berkembang akhir – akhir ini (Sanjaya, et al., 2002) .

Cabai merah (Capsicum annum) merupakan salah satu jenis  sayuran penting yang bernilai ekonomis tinggi dan cocok untuk dikembangkan di  daerah tropika seperti di Indonesia. Cabai sebagian besar digunakan untuk konsumsi rumah tangga dan sebagiannya untuk ekspor dalam bentuk kering, saus, tepung dan lainnya. Pada  saat  tertentu,  kebutuhan  cabai  sangat tinggi  sehingga  produksi  nasional  tidak  mampu memenuhi  permintaan  yang  selalu  bertambah  dari  tahun ke tahun (Suharsono, et al., 2009).

Induksi Mutasi Fisik dalam Pemuliaan Tanaman

Pemuliaan tanaman merupakan ilmu pengetahuan yang bertujuan untuk memperbaiki sifat tanaman, baik secara kualitatif maupun kuantitatif. Pemuliaan tanaman bertujuan untuk menghasilkan varietas tanaman dengan sifat-sifat (morfologi, fisiologi, biokimia, dan agronomi) yang sesuai dengan sistem budidaya yang ada dan tujuan ekonomi yang diinginkan. Pemuliaan tanaman akan berhasil jika di dalam populasi tersebut terdapat banyak variasi genetik. Variasi genetik dapat diperoleh dengan beberapa cara, yaitu koleksi, introduksi, hibridisasi, dan induksi mutasi (Crowder, 1986). Pemuliaan tanaman secara konvensional dilakukan dengan hibridisasi, sedangkan pemuliaan secara mutasi dapat diinduksi dengan mutagen fisik atau mutagen kimia.  Pada umumnya mutagen fisik dapat menyebabkan mutasi pada tahap kromosom, sedangkan mutagen kimia umumnya menyebabkan mutasi pada tahapan gen atau basa nitrogen (Aisyah, 2006)

Mutasi adalah suatu proses dimana suatu gen mengalami perubahan struktur (Crowder, 1986), sedangkan menurut Poehlman and Sleper (1995) mutasi adalah suatu proses perubahan yang mendadak pada materi genetik dari suatu sel, yang mencakup perubahan pada tingkat gen, molekuler, atau kromosom. Induksi mutasi merupakan salah satu metode yang efektif untuk meningkatkan keragaman tanaman (Wulan, 2007). Mutasi gen terjadi sebagai akibat perubahan dalam gen dan timbul secara spontan. Gen yang berubah karena mutasi disebut mutan.

Mutasi  memiliki arti penting bagi pemuliaan tanaman, yaitu (1) Iradiasi memungkinkan untuk meningkatkan hanya satu karakter yang diinginkan saja, tanpa mengubah karakter yang lainnya. (2) Tanaman yang secara umum diperbanyak  secara vegetatif pada umumnya bersifat heterozigot yang dapat menimbulkan keragaman yang tinggi setelah dilakukannya iradiasi. (3) Iradiasi merupakan satu-satunya cara yang dapat dilakukan untuk meningkatkan keragaman pada tanaman yang steril dan apomiksis (Melina, 2008). Mutasi juga dapat menghasilkan karagaman yang lebih cepat dibandingkan pemuliaan secara konvensional. Selain itu, mutasi juga dapat menghasilkan keragaman yang tidak dapat diprediksi dan diduga. Hal ini sangat baik dalam perkembangan tanaman hias. Pemuliaan dengan mutasi, selain mempunyai beberapa keunggulan juga memiliki beberapa kelemahan, dimana sifat yang diperoleh tidak dapat diprediksi dan ketidakstabilan sifat-sifat genetik yang muncul pada generasi berikutnya (Syukur, 2000).

Aplikasi induksi mutasi dengan mutagen fisik dapat dilakukan melalui beberapa teknik, yaitu (a) iradiasi tunggal (acute iradiation), (b) chronic irradiation, (c) iradiasi terbagi (frationated irradiation), dan (d) iradiasi berulang (Misniar, 2008). Iradiasi tunggal adalah iradiasi yang dilakukan hanya dengan satu kali penembakan sekaligus. Chronic irradiation adalah iradiasi dengan penembakan dosis rendah, namun dilakukan secara terus-menerus selama beberapa bulan. Iradiasi terbagi adalah radiasi dengan penembakan yang seharusnya dilakukan hanya satu kali, namun dilakukan dua kali penembakan dengan dosis setengahnya sedangkan radiasi berulang adalah radiasi dengan memberikan penembakan secara berulang dalam jarak dan waktu yang tidak terlalu lama.

Dosis iradiasi yang digunakan untuk menginduksi keragaman sangat menentukan keberhasilan terbentuknya tanaman mutan. Broertjes  dan  Van  Harten  (1988)  melaporkan kisaran  dosis  radiasi  sinar  gamma  pada  berbagai  jenis tanaman hias,  dan  untuk  tanaman  anyelir  kisaran  yang telah  dicobakan  berada  pada  selang yang masih  cukup lebar, yaitu  antara 25-120 gray. Jika iradiasi dilakukan pada beni, pada umumnya kisaran dosis yang  efektif lebih tinggi dibandingkan jika dilakukan pada bagian tanaman lainnya. Semakin banyak kadar oksigen dan molekul air (H2O) dalam materi yang diiradiasi, maka akan semakin banyak pula radikal bebas yang terbentuk sehingga tanaman menjadi lebih sensitif (Herison, et al., 2008). Untuk  itu maka perlu dicari  dosis  optimum  yang  dapat  efektif menghasilkan tanaman mutan  yang pada  umumnya  terjadi  pada  atau  sedikit  dibawah  nilai LD50  (Lethal  Dose  50).  LD50  adalah  dosis  yang menyebabkan  50%  kematian  dari  populasi  yang diradiasi.

Radiasi Sinar Gamma

Radiasi adalah pancaran energi melalui suatu materi atau ruang dalam bentuk panas, partikel, atau gelombang elektromagnetik (foton) dari suatu sumber energi (BATAN, 2008). Radiasi energi tinggi adalah bentuk-bentuk energi yang melepaskan tenaga dalam jumlah yang besar dan kadang-kadang disebut juga radiasi ionisasi (BATAN, 2008) karena ion-ion dihasilkan dalam bahan yang dapat ditembus oleh energi tersebut (Crowder, 1986). Radiasi dapat menginduksi terjadinya mutasi karena sel yang teradiasi akan dibebani oleh tenaga kinetik yang tinggi, sehingga dapat mempengaruhi atau mengubah reaksi kimia sel tanaman yang  pada akhirnya dapat menyebabkan terjadinya perubahan susunan kromosom tanaman (Poespodarsono, 1988).

Radiasi memiliki beberapa tipe, yaitu radiasi sinar X, radiasi sinar gamma, dan radiasi sinar ultra violet (Crowder, 1986). Radiasi sinar gamma dipancarkan dari isotop radio aktif, panjang gelombangnya lebih pendek dari sinar X, dan daya tembusnya adalah yang paling kuat. Hidayat, (2004) mengatakan bahwa sinar gamma merupakan bentuk sinar yang paling kuat dari bentuk radiasi yang diketahui, kekuatannya hampir 1 miliar kali lebih berenergi dibandingkan radiasi sinar X.

BAHAN DAN METODE

Waktu dan Tempat Pelaksanaan

Penanaman benih hasil iradiasi berbagai konsentrasi ditanam pada hari Selasa, 13 Desember 2010 di Lab Pemuliaan Tanaman, Departemen Agronomi dan Hortikultura, FAPERTA, IPB.

Bahan dan Alat

Bahan – bahan yang digunakan dalam percobaan ini adalah:

1.      Benih cabai

2.      Benih padi

3.      Benih sorgum

4.      Benih kedelai

5.      Media tanam jadi

Alat – alat yang digunakan dalam percobaan ini adalah:

1.      Tray perkecambahan

2.      Label

3.      Alat tulis

4.      Alat ukur

5.      Gamma chamber 4000A

Metode Pelaksanaan

1.      Masukkan benih padi, cabai, sorgum, dan kedelai ke dalam plastik

2.      Radiasi benih – benih tersebut ke dalam gamma chamber 4000A dengan sumber radiasi Co60

3.      Kecambahkan benih dalam tray perkecambahan

4.      Amati daya tumbuh dan tinggi tanaman

5.      Bandingkan antar perlakuan

6.      Buat kurva respon LD50

HASIL DAN PEMBAHASAN

LD50 pada Benih Padi, Kedelai, Sorgum, dan Cabai

Nilai LD50 dapat diperoleh dengan mengetahui pola respon daya tumbuh tanaman terhadap berbagai dosis iradiasi. Gambar 24 memperlihatkan berbagai respon daya tumbuh benih tanaman padi, kedelai sorgum, dan cabai.

(a)                                                                    (b)

(c)                                                                      (d)

Gambar 24. Kurva Respon Daya Tumbuh Brnih (a) Padi, (b) Kedelai, (c) Sorgum, dan (d) Cabai.

Gambar 24 memperlihatkan bahwa semakin tingi dosis iradiasi, dapat menurunkan daya tumbuh tanaman. Menurunnya daya hidup tanaman disebatkan karena adanya efek deterministik akibat iradiasi sinar gamma. Efek deterministik adalah efek yang disebabkan karena kematian sel akibat paparan radiasi (PPIN BATAN, 2008) (gambar 25). Efek deterministik timbul bila dosis yang diterima tanaman di atas dosis ambang (threshold dose) dan umumnya timbul beberapa saat setelah iradiasi. Tingkat keparahan efek deterministik akan meningkat bila dosis yang diterima lebih besar dari dosis ambang.

Gambar 25. Tanaman Cabai yang Gagal Tumbuh Akibat Iradiasi Sinar Gamma

Gambar 24 juga memperlihatkan respon daya tumbuh benih sorgum dan cabai sama – sama menghasilkan respon linear, sedangkan benih padi dan kedelai menghasil respon daya tumbuh kuadratik dan modified power. Persamaan masing – masing respon daya tumbuh, dan LD 50 nya dapat dilihat pada tabel 3.

Tabel 3. LD50 pada Pada Benih Tanaman Padi, Kedelai, Sorgum, dan Cabai

Tanaman Persamaan Kurva Respon Kurva LD50 (Gy)
Padi y = 87.200424 – 0.026250303x- 0.00012054545 (x2) Quadratic Fit 515.298
Kedelai y = 70.751567 (0.99771429x) Modified Power 260.284
Sorgum y = 87.6975 – 0.10383333x Linear Fit 422.397
Cabai y = 102.13376 – 0.126588x Linear Fit 457.285

Tabel 3 memperlihatkan bahwa benih padi menghasilkan LD50 yang paling besar diantara yang benih lainnya yaitu 515.296 Gy. LD50 terkecil dihasilkan oleh benih kedelai, yaitu 260.284 Gy. Benih padi varietas Super Basmati memiliki LD50 sebesar 223 Gy (Cheema and Atta, 2003). Karthika and Lakshmi (2006) menjelaskan dalam laporannya bahwa benih kedelai CO1 dan CO2 memiliki LD50 sebesar 620 dan 583 Gy. Human and Sihono (2010) melaporkan bahwa benih sorgum memiliki LD50 sebesar 504 Gy.

LD50 pada benih di atas pada umunya tinggi, hal ini mengindikasikan bahwa baenih – benih tersebut memiliki radiosensitivitas yang rendah. Hal ini diduga karena kandungan air pada benih – benih tersebut sudah sangat rendah. Semakin banyak kadar oksigen dan molekul air (H2O) dalam materi yang diiradiasi, maka akan semakin banyak pula radikal bebas yang terbentuk sehingga tanaman menjadi lebih sensitif (Herison, et al., 2008). Rendahnya LD50 pada benih kedelai diantara benih lainnya diduga karena benih kedelai lebih cepat mengalami kerusakan. Hal ini karena benih kedelai memiliki kandungan protein yang tinggi dibandingkan benih – benih lainnya.

Tinggi Tanaman

Tinggi tanaman padi, kedelai, sorgum, dan cabai pada 14 MST dapat dilihat pada gambar 26. Gambar 26 memperlihatkan bahwa pada semua tanaman, semakin tinggi dosis iradiasi dapat menurunkan tinggi tanaman. Wuryan (2009) mengemukakan bahwa iradiasi sinar gamma berpengaruh nyata menurunkan rata-rata tinggi planlet beberapa genotipe krisan. Aisyah (2006) juga menjelaskan bahwa menurunnya tinggi kecambah adalah indikator yang paling umum digunakan untuk melihat efek mutagen, baik fisik maupun kimia.

Gambar 26. Grafik Tinggi Benih Padi, Kedelai, Sorgum, dan Cabai pada Berbagai Dosis Iradiasi.

Penurunan tinggi tanaman tersebut dapat terjadi karena iradiasi dapat menyebabkan rusaknya kromosom tanaman, sehingga mengakibatkan terganggunya tanaman tersebut. Ionisasi akibat iradiasi dapat menyebabkan pengelompokan molekul – molekul sepanjang jalur ion yang tertinggal karena iradiasi yang dapat menyebabkan mutasi gen atau kerukan kromosom (Aisyah, 2006).

KESIMPULAN DAN SARAN

Kesimpulan

Iradiasi sinar gamma dapat menurunkan daya hidup padi, kedelai, sorgum, dan cabai. Terdapat 3 pola respon daya hidup yang dihasilkan dalam percobaan ini, yaitu: linear pada benih sorgum (y = 87.6975 – 0.10383333x ) dan cabai (y = 102.13376 – 0.126588x), kuadratik pada benih padi (y = 87.200424 – 0.026250303x – 0.00012054545 (x2)), dan modified power pada benih kedelai (y = 70.751567 (0.99771429x)).

Benih padi menghasilkan LD50 yang tertinggi yaitu 515.298, sedangkan LD50 terendah dihasilkan oleh benih kedelai, yaitu 260.284. Benih sorgum dan cabai menghasil LD50 yang hampir sama, yaitu 422.397 dan  457.285 Gy. Iradiasi sinar gamma juga dapat menurunkan tinggi kecambah benih padi, kedelai, sorgum, dan cabai.

Saran

Perlu dilakukan pengamatan sitologis terhadapa kecambah benih – benih yang diiradiasi, agar dapat terlihat jika terdapat mutasi baik pada tingkat gen atau tingkat kromosom.

DAFTAR PUSTAKA

Aisyah, S. I. 2006. Mutasi induksi, hal. 159 – 178. Dalam S. Sastrosumarjo (Ed.) Sitogenetika Tanaman. IPB Press. Bogor.

Aisyah, S. I., H. Aswidinoor, A. Saefuddin, B. MArwoto, dan S. Sastrosumarjo. 2009. Induksi mutasi pada stek pucuk anyelir (Dianthus caryophyllus Linn.) nelalui iradiasi sinar gamma. J. Agron. Indonesia. 37 (1) : 62 – 70.

BATAN. 2008. Radiasi. http://www.batan.go.id/organisasi/kerjasama.php. 19 Desember 2008.

Cheema, A. A. and B. M. Atta. 2003. Radiosensitivity studies in Basmati rice. Pak. J. Bot. 35 (2) : 197 – 207.

Crowder, L. V. 1986. Mutagenesis. Hal 322 – 356. Dalam Soetarso (Ed). Genetika Tumbuhan. Gadjah Mada University Press. Jogjakarta.

Herison, C., Rustikawati, Sujono H. S., Syarifah I. A. 2008. Induksi mutasi melalui sinar gamma terhadap benih untuk meningkatkan keragaman populasi dasar jagung (Zea mays L.). Akta Agrosia 11(1):57-62.

Hidayat, D. 2004. Terungkapnya Asal-Usul Sinar Kosmis. Tempo. 5 November 2004.

Human, S. and Sihono. 2010 Sorghum breeding for improved drought tolerance using induced mutation wiyh gamma irradiation. J. Agron. Indonesia. 38 (2) : 95 – 99

Karhika, R. and B. S. Lakshmi. 2006. Effect of gamma rays and EMS on two varieties of soybean. Asian Journal of Plant Sciences. 5 (4) : 721 – 724.

PDIN BATAN. Kedelai Varietas Unggul Baru Hasil Pemuliaan Mutasi Radiasi. http://www.warintek.ristek.go.id/nuklir/kedelai.pdf. [9 Januari 2011].

Poehlman, J. M., and D. A. Sleper. 1995. Breeding Field Crops. Iowa State University Press. Ames. 432 p.

Poespodarsono, S. 1988. Dasar-Dasar Ilmu Pemuliaan Tanaman. PAU IPB dan LSI-IPB. Bogor. 168 hal.

PPIN BATAN. 2008. Radiasi. http://www.batan.go.id/FAQ/faq_radiasi.php. [31 Oktober 2009]

Sanjaya, L., G. A. Wattimena, E. Guharja, M. Yusuf, H. Aswidinnoor, dan P. Stam. 2002. Keragaman ketahanan aksesi Capsicum terhadap antraknose (Colletotrichum capsici) berdasarkan penanda RAPD. Jurnal Bioteknologi Pertanian. 7 (2) : 37 – 42.Susanto, U., A. A. Daradjat, dan B. Suprihatno. 2003. Perkembangan pemuliaan padi sawah di Indonesia. Jurnal Litbang Pertanian. 22(3):125-131

Soedjono, S. 2003. Aplikasi mutasi induksi dan variasi somaklonal dalam pemuliaan tanaman. Jurnal Litbang Pertanian. 22(2) : 70-78.

Suharsono, M. Alwi, A. Purwito. 2009. Pembentukkan tanaman cabai haploid melalui induksi ginogenesis dengan menggunakan serbuk sari yang diiradiasi sinar gamma. J. Agron. Indonesia. 37 (2) : 123 – 129.

Sungkono, Trikoesoemaningtyas, D. Wirnas, D. Sopandie. S. Human. M. A. Yudiarto. 2009. Pendugaan parameter genetik dan seleksi galur mutan sorgum (Sorhum bicolor (L.) Moench) di Tanah Masam. J. Agron. Indonesia. 37 (3) : 220 – 225.

Syukur, S. 2000. Efek Iradiasi Gamma pada Pembentukan Variasi Klon dari Catharantus roseus [L.] Don. Risalah Pertemuan Ilmiah Penelitian dan Pengembangan Teknologi Isotop dan Radiasi. Biochemistry Biotechnology Lab. Andalas University Padang. Padang. 33-37.

LAPORAN PRAKTIKUM PENGGILINGAN PADI

Download lengkap pdf Laporan Penggilingan Padi klik disini..!!

PENDAHULUAN

Latar Belakang

Masalah utama dalam penanganan pasca panen padi yang sering dialami oleh petani adalah tingginya kehilangan hasil selama pasca panen. Kegiatan pasca panen meliputi proses pemanenan padi, penyimpanan padi, pengeringan gabah, dan penggilingan gabah hingga menjadi beras. BPS (1996) menyebutkan kehilangan hasil panen dan pasca panen akibat dari ketidaksempurnaan penanganan pasca panen mencapai 20,51%, dimana kehilangan saat pemanenan 9,52%, perontokan 4,78 %, pengeringan 2,13% dan penggilingan 2,19%. Besarnya kehilangan pasca panen terjadi kemungkinan dikarenakan sebagian besar petani masih menggunakan cara-cara tradisional atau meskipun sudah menggunakan peralatan mekanis tetapi proses penanganan pasca panennya masih belum baik dan benar.

Pemerintah perlu lebih mengkampanyekan penanganan pasca panen yang baik, sampai usaha ini mendapat respon yang baik dari petani. Jika tingkat kehilangan panen bisa ditekan sampai minimal 0,5 sampai 1 persen untuk setiap kegiatan pasca panen dan secara bertahap dapat dikurangi sampai 3 sampai 5 persen berarti total produksi padi yang bisa diselamatkan mencapai 1,59 sampai 2,65 juta ton. Suatu jumlah yang sangat besar untuk mendukung mengamankan target produksi beras nasional setiap tahunnya (Purwanto, 2005).

Penggilingan padi mempunyai peranan yang sangat vital dalam mengkonversi padi menjadi beras yang siap diolah untuk dikonsumsi maupun untuk disimpan sebagai cadangan. Dalam kaitan dengan proses penggilingan padi, karakteristik fisik padi sangat perlu diketahui karena proses penggilingan padi sebenarnya mengolah bentuk fisik dari butiran padi menjadi beras putih. Butiran padi yang memiliki bagian-bagian yang tidak dapat dimakan atau tidak enak dimakan, sehingga perlu dipisahkan. Selama proses penggilingan, bagian-bagian tersebut dilepaskan sampai akhirnya didapatkan beras yang enak dimakan yang disebut dengan beras sosoh (beras putih).

Tujuan

Tujuan dari praktikum ini adalah mempelajari proses penggilingan padi dan mutu fisik beras.

TINJAUAN PUSTAKA

Beras merupakan sumber utama kalori bagi sebagian besar penduduk Indonesia. Pangsa beras pada konsumsi kalori total adalah 54.3% atau dengan kata lain setengah dari intake kalori masyarakat Indonesia bersumber dari beras (Harianto, 2001).

Secara umum mutu beras dapat dikelompokkan ke dalam 4 kategori, yaitu mutu giling, mutu rasa dan mutu tunak, mutu gizi, dan standar spesifik untuk penampakan dan kemurnian biji (misalnya besar, bentuk dan kebeningan beras).

Mutu beras giling dikatakan baik jika hasil proses penggilingan diperoleh beras kepala yang banyak dengan beras patah minimal. Mutu giling ini juga ditentukan dengan banyaknya beras putih atau rendemen yang dihasilkan. Mutu giling ini sangat erat kaitannya dengan nilai ekonomis dari beras. Salah satu kendala dalam produksi beras adalah banyaknya beras pecah sewaktu digiling. Hal ini dapat menyebabkan mutu beras menurun (Allidawati dan Kustianto, 1989).

Saat ini telah dibuat RSNI mengenai mutu beras giling yang dapat dilihat pada tabel 1.

Tabel 1. Mutu beras: RSNI 01-6128-200x

No. Komponen Mutu Satuan Mutu
I II III IV V
1 Derajat sosoh (min) % 100 100 95 95 95
2 Kadar air (max) % 14 14 14 14 14
3 Butir kepala (min) % 95 89 78 73 60
4 Butir patah total (max) % 5 10 20 25 35
5 Butir menir (max) % 0 1 2 2 5
6 Butir merah (max) % 0 1 2 3 3
7 Butirkuning/rusak (max) % 0 1 2 3 5
8 Butir mengapur (max) % 0 1 2 3 5
9 Benda asing (max) % 0 0.02 0.02 0.05 0.20
10 Butir gabah (max) Butir/100g 0 1 1 2 3

Penggilingan beras berfungsi untuk menghilangkan sekam dari bijinya dan lapisan aleuron, sebagian mapun seluruhnya agar menhasilkan beras yang putih serta beras pecah sekecil mungkin. Setelah gabah dikupas kulitnya dengan menggunakan alat pecah kulit, kemudian gabah tersebut dimasukkan ke dalam alat penyosoh untuk membuang lapisan aleuron yang menempel pada beras. Selama penyosohan terjadi, penekanan terhadap butir beras sehingga terjadi butir patah. Menir merupakan kelanjutan dari butir patah menjadi bentuk yang lebih kecil daripada butir patah (Damardjati, 1988).

Menurut Nugraha et al.(1998), nilai rendemen beras giling dipengaruhi oleh banyak faktor yang terbagi dalam tiga kelompok. Kelompok pertama adalah faktor yang mempengaruhi rendemen melalui pengaruhnya terhadap mutu gabah sebagai bahan baku dalam proses penggilingan yang meliputi varietas, teknik budidaya, cekamaman lingkungan, agroekosistem, dan iklim. Kelompok kedua merupakan faktor penentu rendemen yang terlibat dalam proses konversi gabah menjadi beras, yaitu teknik penggilingan dan alat penggilingan. Kelompok ketiga menunjukkan kualitas beras terutama derajat sosoh yang diinginkan, karena semakin tinggi derajat sosoh maka rendemen akan semakin rendah.

Susut mutu dari suatu hasil giling dapat diidentifikasikan dalam nilai derajat sosoh serta ukuran dan sifat butir padi yang dihasilkan. Umumnya semakin tinggi derajat sosoh, persentase beras patah menjadi semakin meningkat pula.           Ukuran butir beras hasil giling dibedakan atas beras kepala, beras patah, dan menir (Anonim, 1983). Berdasarkan persyaratan yang dikeluarkan oleh Bulog, beras kepala merupakan beras yang memiliki ukuran lebih besar dari 6/10 bagian beras utuh. Beras patah memiliki ukuran butiran 2/10 bagian sampai 6/10 bagian beras utuh. Menir memiliki ukuran lebih kecil dari 2/10 bagian beras utuh atau melewati lubang ayakan 2.0 mm (Waries, 2006).

BAHAN DAN METODE

Waktu dan Tempat

Praktikum ini dilaksanakan di tempat penggilingan padi Sawah Baru, Darmaga, Bogor. Praktikum ini dilaksanakan pada tanggal 9 September 2008.

Bahan dan Alat

Bahan yang digunakan dalam praktikum ini adalah gabah kering giling dari beras varietas Way Apo Buru, karung, dan plastik. Sedangkan alat yang digunakan adalah timbangan dan mesin penggiling padi.

Metode Percobaan

1.      Timbang gabah sebanyak 50 kg. Gabah harus diketahui varietasnya yaitu Way Apo Buru, asal gabah, waktu pemanenan, kadar air gabah, dan langsung dikeringkan sampai kadar air 14% baik melalui penjemuran atau menggunakan alat pengering. Gabah yang sudah kering sebaiknya dicegah tidak terkena hujan karena dapat meningkatkan butir patah dan menir.

2.      Proses pemecahan kulit (husker). Pada tahap ini, tumpukan gabah disiapkan di dekat lubang pemasukan (corong sekam) gabah. Mesin penggerak dan mesin pemecah kulit dihidupkan, kemudian corong sekam dibuka-tutup dengan alat klep penutup. Proses pemecahan kulit berjalan baik bila tidak ada butir gabah pada beras pecah kulit. Namun, bila masih ada banyak butir gabah, harus disetel kembali struktur rubberroll dan kecepatan putarannnya. Pada proses ini akan dihasilkan beras pecah kulit (brown rice).

3.      Proses penyosohan beras (polisher). Proses ini menggunakan alat penyosoh tipe friksi yaitu gesekan antar butiran, sehingga dihasilkan beras yang bening. Beras pecah kulit disosoh dua kali. Perlu diperhatikan kecepatan putaran untuk mencapai beras berkualitas dengan menyetel gas pada mesin penggerak dan menyetel katup pengepresan keluarnya beras. Pada tahap ini dihasilkan beras sosoh.

HASIL DAN PEMBAHASAN

Hasil

Berat gabah awal = 50 kg

Berat beras sosoh (beras putih) = 30.5 kg

Rendemen = Berat beras sosoh x  100% = 30.5 kg x  100% = 61%

Berta gabah awal                       50 kg

Tabel 2. Berat Beras Kepala, Beras Patah, dan Menir Hasil Penggilingan (dalam     100 gram)

No. Ukuran Beras Berat (gram) Persentase (%)
1 Beras kepala 40.1 41.2
2 Beras patah 16.1 16.6
3 Menir 41.0 42.2
Jumlah 97.2 100

Pembahasan

Penggilingan merupakan proses pelepasan sekam dari beras. Karakteristik fisik padi sangat perlu diketahui karena proses penggilingan padi sebenarnya mengolah bentuk fisik dari butiran padi menjadi beras putih. Butiran padi yang memiliki bagian-bagian yang tidak dapat dimakan, atau tidak enak dimakan, sehingga perlu dipisahkan. Selama proses penggilingan, bagian-bagina tersebut dilepaskan satu demi satu sampai akhirnya didapatkan beras yang dapat dikonsumsi yang disebut dengan beras sosoh atau beras putih. Beras sosoh merupakan hasil utama proses penggilingan padi. Beras sosoh adalah gabungan beras kepala dan beras patah besar. Beras patah kecil atau menir sering disebut sebagai hasil samping karena tidak dikonsumsi sebagai nasi seperti halnya beras kepala dan beras patah besar. Jadi, hasil samping proses penggilingan padi berupa sekam, bekatul, dan menir.

Mesin-mesin penggilingan padi berfungsi melakukan pelepasan dan pemisahan bagian-bagian butir padi yang tidak dapat dimakan dengan seminimal mungkin membuang bagian utama beras dan sesedikit mungkin merusak butiran beras. Terdapat dua tahap dalam proses penggilingan yaitu husking dan polishing. Husking adalah tahap melepaskan beras yang menghasilkan beras pecah kulit (brown rice). Dari struktur butiran gabah, bagian-bagian yang akan dilepaskan adalah palea, lemma, dan glume. Seluruhnya bagian tersebut dinamakan kulit gabah atau sekam. Sebagian besar gabah yang dimasukkan ke dalam mesin pemecah kulit (husker) akan terkupas dan masih ada sebagian kecil yang belum terkupas. Butiran gabah yang terkupas akan terlepas menjadi dua bagian, yaitu beras pecah kulit dan sekam. Selanjutnya butiran gabah yang belum terkupas harus dipisahkan dari beras pecah kulit dan sekam untuk dimasukkan kembali ke dalam mesin pemecah kulit.

Proses pengupasan akan berjalan baik apabila gabah memiliki kadar air yang sesuai yaitu antara 13-15%. Pada kadar air yang lebih tinggi proses pengupasan akan sulit karena sekam sulit dipecahkan. Sebaliknya, pada kadar air yang lebih rendah, butiran padi akan mudah pecah atau patah sehingga akan menghasilkan banyak beras patah atau menir. Untuk mendapatkan kualitas pengupasan yang baik, maka penyetelan mesin pemecah kulit perlu dilakukan secara tepat.

Sedangkan polishing adalah proses penyosohan beras yang menghasilkan beras sosoh/beras putih. Mesin yang digunakan pada proses ini disebut polisher.Penyosohan dilakukan untuk membuang lapisan bekatul dari butiran beras. Di samping membuang lapisan bekatul, pada proses ini juga dibuang bagian lembaga dari butiran beras. Untuk mendapatkan hasil yang baik, proses ini biasanya dilakukan beberapa kali, tergantung pada kualitas beras sosoh yang diinginkan. Makin sering proses penyosohan dilakukan, atau makin banyak mesin penyosoh yang dilalui, maka beras sosoh yang dihasilkan makin putih dan beras patah yang dihasilkan makin banyak. Setelah beras disosoh menjadi berwarna putih, selanjutnya beras dapat digosok lagi dengan sedikit tambahan uap air agar memiliki permukaan halus dan warna mengkilap.

Dari bentuk gabah kering giling sampai menjadi beras sosoh, berat biji padi akan berkurang sedikit demi sedikit selama proses penggilingan akibat dari pengupasan dan penyosohan. Bagian-bagian yang tidak berguna akan dipisahkan sedangkan bagian utama yang berupa beras dipertahankan. Namun tidak dapat dihindarkan sebagian butiran beras akan patah selama proses penggilingan.

Kualitas fisik gabah terutama ditentukan oleh kadar air dan kemurnian gabah. Yang dimaksud dengan kadar air gabah adalah jumlah kandungan air dalam butiran gabah. Sedangkan tingkat kemurnian gabah merupakan persentase berat gabah bernas terhadap berat keseluruhan campuran gabah. Makin banyak benda asing atau gabah hampa atau rusak dalam campuran gabah maka tingkat kemurnian gabah makin menurun.

Kualitas gabah akan mempengaruhi kualitas dan kuantitas beras yang dihasilkan. Kualitas gabah yang baik akan berpengaruh pada tingginya rendemen giling. Hasil rendemen yang diperoleh kelompok kami dalam praktikum kali ini sebesar 61%. Nilai ini belum mancapai kriteria rendemen yang baik karena menurut literatur, proses penyosohan berjalan baik bila rendemen beras yang dihasilkan sama atau lebih dari 65% dan derajat sosoh sama atau lebih dari 95%.

Menurut Nugraha et al. (1998), nilai rendemen giling dipengaruhi oleh banyak faktor yang terbagi ke dalam tiga kelompok. Kelompok pertama adalah faktor yang mempengaruhi rendemen melalui pengaruhnya terhadap mutu gabah sebagai bahan baku dalam proses penggilingan, yang meliputi varietas, teknik budidaya, cekaman lingkungan, agroekosistem, dan iklim. Kelompok kedua merupakan faktor penentu rendemen yang terlibat dalam proses koversi gabah menjadi beras, yaitu teknik penggilingan dan alat/mesin penggilingan. Kelompok ketiga menunjukkan kualitas beras terutama derajar sosoh yang diinginkan, karena semakin tinggi derajat sosoh, maka rendemen akan semakin rendah.

Beras sosoh dipisahkan menjadi beberapa ukuran, yaitu beras kepala, beras patah, dan menir. Mutu beras giling dikatakan baik apabila hasil dari proses penggilingan diperoleh beras kepala yang banyak dengan beras patah dan menir minimal. Dari hasil percobaan yang kami peroleh, didapat persentase beras kepala adalah sebesar 41.2%, beras patah 16.6%, dan menir 42.2%. Besarnya persentase menir paling tinggi dibandingkan dengan persentase beras kepala dan beras patah. Hal ini menunjukkan mutu beras masih rendah.

Pada proses penggilingan, beras patah dan menir tidak dikehendaki. Yang dikehendaki adalah sebanyak mungkin beras kepala. Namun timbulnya beras patah dan menir tidak dapat dihindari. Timbulnya beras patah dan menir terutama terjadi pada proses penyosohan, yaitu pada saat menggosok permukaan beras untuk melepaskan bagian bekatul.

Selain kinerja mesin penggiling, terjadinya beras patah juga ditentukan oleh kualitas gabah sebelum digiling. Dengan penanganan yang kurang tepat, gabah dapat menjadi mudah patah atau retak, atau bahkan telah patah sebelum digiling. Gabah dapat patah atau retak selama penanganan pasca panen sebagia kaibat dari adanya perubahan cuaca, terutama fluktuasi suhu dan kelembaban relatif udara. Ini bisa terjadi apabila perubahan hari panas dan hujan terjadi berkali-kali dalam jangka waktu yang lama. Fluktuasi ini menyebabkan butiran gabah mengkerut dan mengembang dengan interval tidak teratur sehingga terjadi keretakan. Keretakan serupa juga dapat terjadi apabila dilakukan metode pengeringan yang tidak tepat.

KESIMPULAN

Kualitas gabah yang baik akan berpengaruh pada tingginya rendemen giling. Hasil rendemen yang diperoleh kelompok kami dalam praktikum kali ini sebesar 61%. Nilai ini belum mancapai kriteria rendemen yang baik karena kurang dari 65%. Dari hasil percobaan yang kami peroleh, didapat persentase beras kepala adalah sebesar 41.2%, beras patah 16.6%, dan menir 42.2%. Besarnya persentase menir paling tinggi dibandingkan dengan persentase beras kepala dan beras patah. Hal ini menunjukkan mutu beras masih rendah.

DAFTAR PUSTAKA

Allidawati dan B.Kustianto. 1989. Metode uji mutu beras dalam program   pemuliaan padi. Dalam: Ismunadji M., M. Syam dan Yuswadi. Padi Buku    2. Badan Penelitian dan Pengembangan Pertanian. Pusat Penelitian dan             Pengembangan Tanaman Pangan. Bogor. Hal: 363-375.

Anonim. 1983. Studi Konservasi dan Susut Gabah ke Beras Tingkat Nasional.       Biro Pusat Statistik, Departemen Pertanian, Badan Urusan Logistik, Badan     Perencanaan Pembangunan Nasional, Fakultas Teknologi Pertanian, IPB.     Bogor.

BPS. 1996. Badan Pusat Statistik Indonesia.

Damardjati, D.S. 1988. Struktur kandungan gizi beras. Dalam: Ismunadji, M.,       S.Partohardjono, M.Syam, A.Widjono. Padi-Buku 1. Balai Penelitian dan          Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Pertanian,        Pusat Penelitian dan Pengembangan Tanaman Pangan. Bogor. Hal: 103-     159.

Harianto. 2001. Pendapatan, harga, dan konsumsi beras. Dalam: Suryana, A. Dan S.Mardianto. Bunga rampai ekonomi beras. Penerbit Lembaga      Penyelidikan Ekonomi dan Masyarakat, Fakultas Ekonomi Universitas             Indonesia (LPEM-FEUI).

Nugraha, U.S., S.J.Munarso, Suismono dan A. Setyono. 1998. Tinjauan tentang     rendemen beras giling dan susut pascapanen: 1. Masalah sekitar rendemen      beras giling, susut dan pemecahannya. Makalah. Balai Penelitian Tanaman          Padi. Sukamandi. 15 Hal.

Purwanto, Y.A. 2005. Kehilangan pasca panen padi kita masih tinggi. Inovasi        Online Vol. 4/XVII/Agustus 2005.

Waries, A. 2006. Teknologi Penggilingan Padi. PT Gramedia Pustaka Utama.         Jakarta.